A Newton Method for American Option Pricing
نویسندگان
چکیده
The variational inequality formulation provides a mechanism to determine both the option value and the early exercise curve implicitly [17]. Standard finite difference approximation typically leads to linear complementarity problems with tridiagonal coefficient matrices. The second order upwind finite difference formulation gives rise to finite dimensional linear complementarity problems with nontridiagonal matrices, whereas the upstream weighting finite difference approach with the van Leer flux limiter for the convection term [19, 22] yields nonlinear complementarity problems. We propose a Newton type interior-point method for solving discretized complementarity/variational inequality problems that arise in the American option valuation. We illustrate that the proposed method on average solves a discretized problem in 2 ∼ 5 iterations to an appropriate accuracy. More importantly, the average number of iterations required does not seem to depend on the number of discretization points in the spatial dimension; the average number of iterations actually decreases as the time discretization becomes finer. The arbitrage condition for the fair value of the American option requires that the delta hedge factor be continuous. We investigate continuity of the delta factor approximation using the complementarity approach, the binomial method, and the explicit payoff method. We illustrate that, while the (implicit finite difference) complementarity approach yields continuous delta hedge factors, both the binomial method and the explicit payoff method (with the implicit finite difference) yield discontinuous delta approximations. Hence the early exercise curve computed from the binomial method and the explicit payoff method can be inaccurate. In addition, it is demonstrated that the delta factor computed using the Crank-Nicolson method with complementarity approach oscillates around the early exercise curve. ∗ Computer Science Department and Cornell Theory Center, Cornell University, Ithaca, NY 14850. Research partially supported by the Applied Mathematical Sciences Research Program (KC-04-02) of the Office of Energy Research of the U.S. Department of Energy under grant DE-FG02-90ER25013.A000, NSF through grant DMS9805602 and ONR through grant N00014-96-1-0050, and the Finance Industry Solutions Center, an SGI/Cornell joint venture in New York.
منابع مشابه
Numerical Solutions for Fractional Black-Scholes Option Pricing Equation
In this article we have applied a numerical finite difference method to solve the Black-Scholes European and American option pricing both presented by fractional differential equations in time and asset.
متن کاملAmerican Option Pricing of Future Contracts in an Effort to Investigate Trading Strategies; Evidence from North Sea Oil Exchange
In this paper, Black Scholes’s pricing model was developed to study American option on future contracts of Brent oil. The practical tests of the model show that market priced option contracts as future contracts less than what model did, which mostly represent option contracts with price rather than without price. Moreover, it suggests call option rather than put option. Using t hypothesis test...
متن کاملA new approach to using the cubic B-spline functions to solve the Black-Scholes equation
Nowadays, options are common financial derivatives. For this reason, by increase of applications for these financial derivatives, the problem of options pricing is one of the most important economic issues. With the development of stochastic models, the need for randomly computational methods caused the generation of a new field called financial engineering. In the financial engineering the pre...
متن کاملA spectral-collocation method for pricing perpetual American puts with stochastic volatility
Based on the Legendre pseudospectral method, we propose a numerical treatment for pricing perpetual American put option with stochastic volatility. In this simple approach, a nonlinear algebraic equation system is first derived, and then solved by the Gauss-Newton algorithm. The convergence of the current scheme is ensured by constructing a test example similar to the original problem, and comp...
متن کاملEuropean option pricing of fractional Black-Scholes model with new Lagrange multipliers
In this paper, a new identification of the Lagrange multipliers by means of the Sumudu transform, is employed to btain a quick and accurate solution to the fractional Black-Scholes equation with the initial condition for a European option pricing problem. Undoubtedly this model is the most well known model for pricing financial derivatives. The fractional derivatives is described in Caputo sen...
متن کامل